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Abstract 

We present an approach to the theory of Schubert polynomials, corresponding symmetric 
functions, and their generalizations that is based on exponential solutions of the Yang-Baxter 
equation. In the case of the solution related to the nilCoxeter algebra of the symmetric group, 
we recover the Schubert polynomials of Lascoux and Schiitzenberger, and provide simplified 
proofs of their basic properties, along with various generalizations thereof. Our techniques make 
use of an explicit combinatorial interpretation of these polynomials in terms of configurations of 
labelled pseudo-lines. 
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1. Introduct ion 

The Yang-Baxter operators hi(x) satisfy the following relations (cf. [1,7]): 

h i (x )h j (y )  = h j (y )h i ( x )  if li - j [  >_-2; 

hi(x)hi+l (x + y ) h i ( y )  = hi+l (y )h i (x  + y)hi+l(X); 

The role the representations of the Yang-Baxter algebra play in the theory of quantum 
groups [9], the theory of exactly solvable models in statistical mechanics [1], low- 
dimensional topology [7,27,16], the theory of special functions, and other branches of 
mathematics (see, e.g., the survey [5]) is well known. 
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We study the connections between the Yang-Baxter algebra and the theory of sym- 
metric functions and Schubert polynomials. Let us add to the above conditions the 
equation 

h i ( x ) h i ( y )  ~- hi(x --}- y), 

thus getting the so-called colored braid relations (see [17, 14] for examples of their 
representations). It turns out that, once these relations hold, one can introduce a whole 
class of symmetric functions (and even 'double', or 'super-' symmetric functions) 
and respective analogues of the [double] Schubert polynomials [22,25] as well. These 
analogues are proved to have many of the properties of their prototypes; e.g., we 
generalize the Cauchy identities and the principal specialization formula. 

The simplest solution of the above equations involves the nilCoxeter algebra of the 
symmetric group [14]. Exploring this special case, we construct super-analogues of 
Stanley's symmetric functions Gw (see [29]), provide another combinatorial interpre- 
tation of Schubert polynomials ~w of Lascoux and Schiitzenberger, and reprove the 
basic facts concerning Gw's and ~w'S. Recently, the construction of this paper has been 
used [2] to produce a Pieri rule for Schubert polynomials and yet another algorithm 
that generates the monomials of ~w. 

Other solutions of the main relations are also given. One of them involves Hecke 
algebras, another one the universal enveloping algebra of the Lie algebra of nilpotent 
upper triangular matrices. 

In this paper, we intended to emphasize the power of the 'geometric approach' 
(Sections 3-4) that allows to derive algebraic identities about h i (x ) ' s  by modifying, 
according to certain rules, the corresponding configurations of labelled pseudo-lines. 
This is why some of our proofs appear to look like just 'See Fig. X'  (cf. proofs of 
Proposition 6.4, Theorem 8.1(i), etc.). 

2. The Yang-Baxter equation 

Let d be an associative algebra with identity 1 over a field K of zero characteristic, 
and let {hi(x) : x E K, i = 1,2 . . . .  } be a family of elements of d .  (In fact, we will 
treat x as a formal variable rather than a parameter.) We shall study situations where 
hi(x)'s satisfy the following conditions: 

hi(x)hj(y) = hj(y)hi(x) if [i -j] t>2; 

hi(x)hi+l(x  + y ) h i ( y )  = h i+l (y )h i (x  + y )h i+l (x ) ;  

hi(x)hi(y) = hi(x + y); hi(O ) = 1. 

(2.1) 

(2.2) 

(2.3) 

The condition (2.2) is one of the forms of the Yang-Baxter equation (YBE); (2.3) 
means that we are interested in exponential solutions of the YBE. The most natural 
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way to construct such solutions is the following. Let Ul, u2, • . be generators of  our 
algebra d ;  assume they satisfy 

uiuj = ujui, li - Jl >/2; (2.4) 

i,e., ,~¢ is a local alyebra in the sense of  [30]. Then let 

h i ( x )  = e x p ( x u i ) ;  (2.5) 

we assume that the expression on the right-hand side is well-defined. Then (2.1) and 
(2.3) are guaranteed and we only need to satisfy the YBE (2.2) which in this case can 

be rewritten as 

exp(xui) exp((x + y)ui+l ) exp(yui) = exp(yui+l ) exp((x + y)ui)  exp(xui+l ). (2.6) 

Some examples of  solutions are given below. 

Definition 2.1. A [generalized] Hecke algebra (sometimes also called an Iwahori 

algebra) . ~ , b  is an associative algebra with generators { u i : i  = 1,2, . . .}  satisfying 
(2.4), 

and 

UiUi+l Ui ~ Ui+l Ui~li+l, 

u 2 = aui 4- b. 

In particular, ~0,1 is the group algebra of  the symmetric group. 

(2.7) 

(2.8) 

e CX - 1 

hi(x) = 1 + Ui (2.9) 
a 

satisfy (2.1)-(2.2). 

Lemma 2.2. Let  c E K, The elements hi(x) E ~ ,  b defined by 

The corresponding nilCoxeter alyebra ~o ,  o (see [14]) defined by (2.4), (2.7), and 
u 2 = 0 can be interpreted as the algebra spanned by permutations of  Sn, with the 
multiplication rule 

usual product wv if  l (w) + l(v) = l(wv), 
w - v = 0 otherwise, 

where l (w)  is the length of  a permutation w (the number of  inversions). 
It is not hard to cheek that (2.6) holds in ~ a ,  b if b = 0. However, we will give 

an indirect proof of  this fact, in order to relate it to some well-known properties of  
Hecke algebras. 

The following statement is implicit in [28]. 
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Proof. It is convenient to write [x] instead of (e cx - 1)/a. In this notation, h i ( x  ) ~- 

1 + [x]ui. It is easy to check that [x + y] = [x] + [y] + a[x][y]. Now (cf. (2.2)) 

(1 + [X]Ui)(1 + [X + y]ui+l)(1 q-[y]ui) 

- (1 + [y]ui+l)(1 + Ix + y]ui)(1 + [x]ui+l) 

--= (Ix] + [y] - [x + y])(ui  - Ui+l) + [ x ] [ y ] ( u ~  - -  U~+I) 

= -- a[x][y](ui --  ui+ 1 ) + [x][y](aui + b - aui+l - b)  = O. [] 

Corollary 2.3 (case a = 0). The e lements  h i (x)  E 0¢t°o, b def ined by  hi (x)  = 1 + xui 

sa t i s f y  (2.1)-(2.2). 

Proof. In (2.9), let c = a and then tend a to 0. [] 

In the case a = 0, b = 1 (the group algebra of  the symmetric group) the example 
of the previous corollary is well-known as the so-called Yang's solution [31] of the 
Yang-Baxter equation. 

Corollary 2.4 (case b = 0). L e t  c E K. The e lements  h i (x)  E ~Yga, O def ined by  (2.9) 
sa t i s f y  (2.1)-(2.3). 

Proof. In this case (2.9) can be rewritten as hi(x)  = exp (Cxu i ) ,  and (2.3) follows. [] 

In particular, (2.1)-(2.3) hold in the case a = b = 0 [14, Lemma 3.1]. Thus the 
elements hi(x)  = 1 + xui of  the nilCoxeter algebra of the symmetric group provide an 
exponential solution of  the Yang-Baxter equation. (This can also be easily checked 
directly. ) 

3. Geometric interpretation 

The relations (2.1)-(2.2) are known to have a nice geometric interpretation (see, 
e.g., [6]) which is reproduced below; in the next section this interpretation will be 
modified to involve the condition (2.3) as well. 

Suppose we have a family of non-vertical straight lines intersecting a vertical strip 
on a real plane; no three of these lines meet at the same point. Also assume that an 
indeterminate is associated with each line. A typical example is presented in Fig. 1. 
Given such a configuration with n lines, one can define a sequence Sa, " "" sa,, of adjacent 
transpositions (a reduced decomposition in the symmetric group Sn) as shown on Fig. 1; 
in other words, the index ai of each sa, indicates which two of adjacent lines (counting 
bottom-up) get interchanged when we pass the ith intersection point (counting from 
the left). The product of these generators in the symmetric group corresponds to the 
permutation defined by a given configuration. 
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Fig. 1. 

Assume conditions (2.1)-(2.2) are satisfied by some elements {hi(x)} .  Let ~ be a 
configuration of the above-described type. Define 

~((~; X1, X2, . . . )  = ha, (xkt - xt, )ha2 (xk: - xl2 ) " "  hap (xk,, - xtp ), (3.1) 

where, as before, (al . . . . .  ap)  is a reduced decomposition corresponding to the given 
configuration, and xk, and xt, are the indeterminates for the lines meeting at the ith 
intersection point; xk, corresponds to a line with a smaller slope and xt, to a line with 
a greater slope. 

For example, if ~ is the configuration in Fig. 1, then 

~(~;XI ,X2,X3,X4)  ~- hi(x2 - X l ) h 3 ( x 4  - x 3 ) h 2 ( x 4  - x l ) h l ( x 4  - x2 )h3 (x3  -Xl ) .  

Sometimes, for convenience, we will just write ~(c~) or qb(xl,...). 
Informally, the indeterminate attached to a line can be considered as an angle between 

this line and, say, the vertical direction (the 'y-axis'); then the difference xk, -xl~ is 
an 'angle' corresponding to the ith intersection point. 

We are now in a position to interpret conditions (2.1)-(2.2): namely, they mean that 
those moves of lines which do not change the resulting permutation do not affect the 
corresponding expression ~(c~). For example, move line L4 in Fig. 1 (with x4 attached) 
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a little to the left; then the two leftmost intersection points get interchanged; however, 
~(cg) is left invariant since hi(. . .)  and h3(...) commute. Then move Ll to the right 
through the intersection point of L2 and L 4 (be careful that the intersection of Ll and 
L3 does not disappear!). Again, the expression ~(cg) is invariant because 

h i ( x 2  - Xl ) h 2 ( x 4  - Xl ) h i ( x 4  - x 2 )  ~-- h2 (x4  - x 2 ) h l ( X 4  - Xl )h2(x2 - xl ). 

A general transformation of this type is presented in Fig. 2; it clearly corresponds to 
(2.2). 

The entire construction can be straightforwardly extended to 'pseudo-line configura- 
tions'; it means that lines may not be straight, although the following two conditions 
must hold, as before: 

each line is continuous and intersects any vertical line at a single point; (3.2) 

any two lines of a configuration have at most one intersection point. (3.3) 

4. Generalized configurations 

The construction of the previous section can be generalized in the following way. 
Assume the lines forming a configuration are still continuous but they consist of parts 
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(segments); different indeterminates are associated with different segments. A typical 
configuration of this type appears in Fig. 3 where 

~(C~;Xl,X2;Yl . . . . .  Y4) = h3(xl - yl)h2(xl  - y2)hl(Xl - y3)h3(x2 - Y2) 

h2(x2-Y3)h l (X2  - Y4). 

In a pseudo-line version, (3.3) should be replaced now by the following condition: 

any two line segments of a configuration have at most one 

intersection point. (4.1) 

Also note that one can define a natural associative operation on the set of gener- 
alized configurations with, say, n 'threads' - -  namely, the glueing. It corresponds to 
multiplication of respective expressions q~(cg). 

Geometrical interpretation of identities (2.1)-(2.2) remains the same; one should only 
be careful and not move any line through a breakpoint, i.e., through a point separating 
two segments. (Otherwise the whole expression may change.) 

We can also give now an interpretation (or, at least, a consequence) of the condition 
(2.3) in the language of configurations. 

Lemma 4.1. Assume (2.1)-(2.3) are satisfied and a generalized configuration ~ o f  n 

lines has a structure shown in Fig. 4. Namely,  we mean that all intersection points be- 

tween the lines marked  Y2 . . . . .  Yn-1 lie inside the quadrangle f o r m e d  by lines marked  

xj ,  Yl, x2, and yn. 

Then the expression ~(cg) is symmetr ic  in xt and x2. 
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Proof.  Write 

~(c~)  = h n _ l ( X  1 _ Yl  )A (x I , x2 ,  Y2 . . . . .  Y n - I  )h l (xe  - Yn) ,  

where A( . . . )  corresponds to ' internal '  intersection points (see Fig. 4). The whole ex- 

pression is claimed to be symmetric in xl and x2. To prove the claim, consider another 
configuration: remove line segments marked yl and Yn and extend lines marked xl 
and x2 until they intersect. We may assume, without loss of  generality, that this new 

intersection point is on the right-hand side, and no new intersections (among y i ' s )  
appear; see Fig. 5. For the modified configuration ~ ,  one has 

~(c~ t )  ~- A(XI ,X2,  Y2 . . . . .  Yn-1 )h i (x2  - xl  ). (4.2) 

NOW move the lines marked xl and x2 so that their intersections with lines corre- 
sponding to y i ' s  get interchanged; the intersection point o f  our two lines moves to the 
very left, and so we get 

~ ( ~ '  ) = h n -  1 (x2 - xI )A(x2, Xl, Y2 . . . . .  Y n -  1 )- (4.3) 
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Now equate (4.2) and (4.3) and use (2.3) to obtain the claimed identity. [] 

Note that the whole picture (see Fig. 4) can be reflected in a horizontal line, and 
the statement of Lemma 4.1 remains valid. 

Remark 4.2. Under some natural assumptions, one can also consider infinite (to the ri- 
ght, to the left, or both) configurations and define expressions ~ ( ~ )  for them. Namely 
let ~ ( ~ )  be the corresponding infinite product of hi(xk --xt) 's  where xl, x2 . . . .  are the 
variables for participating line segments. Assume that each segment of a configuration 
intersects finitely many other segments. Suppose that hi(x) is actually some power series 
in x (this is the case in all our examples). Then ~(c~) is a power series in xi 's  and a 
computation of a coefficient of each monomial is finite because it only depends on the 
part of the configuration that contains segments corresponding to participating variables. 

5. Symmetric functions 

Now we can use Lemma 4.1 to introduce a class of configurations for which the 
associated expressions are symmetric in many variables. 

Corollary 5.1. Assume  conditions (2.1)-(2.3) are satisfied. Then the expression 

~ (  (~ ; Xl . . . .  , Xm+n-- I "~ Yl , . . . , Ym+n- 1 ) 

defined by a configuration in Fi9. 6 is symmetr ic  in xl . . . . .  Xm+l and, separately, in 

Y l , . . . , Y m + l .  

(Note that it is not  symmetric in xi's and yi's with i>~m + 2.) 
This expression can be formally written as, e.g., 

re+n--2 

~ ( ~ )  = H H h i + j - m - l ( x i -  y j ) ,  ( 5 . 1 )  
d=2-m-n i-j=d 

m+2 <~i+j <~m+n 
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where in the first product the factors are multiplied left-to-right, according to the in- 
crease of d. (Factors in the second product commute.) 

Proof. Follows from Lemma 4.1. [] 

This corollary has some useful modifications and particular cases. First let us tend 
m to infinity. 

Corollary 5.2. Assume (2.1)-(2.3) hold. Define ~(cg) via an infinite configuration on 

Fig. 7. Then ~(cg) is symmetr ic  in xl,x2 . . . .  and, separately, in Zn-l,Zn,Zn+l . . . .  

(Recall Remark 4.2.) 
Now we slightly modify the definition of Corollary 5.1/Fig. 6 to make ~(~)  

symmetric in all the xi's even in the finite setting. 

Corollary 5.3. Assume (2.1)-(2.3) hold. Then an expression ~(cg) defined by Fig. 8 

is symmetr ic  in x l , . . . , x n - ~ .  

This expression can be written as 

n--1 1 

= H H hi(x, - y_,+j+, 
i=l  j=n--1 

where in both [non-commutative] products the factors are ordered left-to-right as indi- 
cated; e.g., the leftmost factor is hn-l(Xl -Yn--1)  and the rightmost factor is hl (x , -1  - 

Y 3 - n  ). 

The simplest case is one when all the yi'S vanish. 

Corollary 5.4. Le t  (2.1)-(2.3) hold. Define A(x )  = h n - l ( x ) .  . . h2(x)hl(x).  Then, f o r  

any x and y, A (x )  and A ( y )  commute. Hence the product  

G(xl ,x2 . . . .  ) = A(xl )A(x2 ) " . . (5.2) 

is symmetr ic  in Xl,X2 . . . . .  
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This statement generalizes [ 14, Lemma 2.1 ]. 
The above constructions allow us to introduce a whole class of symmetric (or double 

symmetric) functions in the following way. Take any representation of the algebra J .  
Apply the operator representing an expression ~ ( ~ )  to an arbitrary vector w; expand 
the result in an arbitrary linear basis and take any of the coordinates. It will be a 
symmetric function in the corresponding variables. 

The main example is the regular representation. Let W be some linear basis of 
~¢. For any a E d and w E W let (a,w) denote the respective coordinate of a; in 
other words, a = ~(a,w)w. Now let ~ be a (generalized) configuration, and let 
w E W. Define ~w(~) = (q~(~),w) (cf. [14, (2.3) and below]). The functions q~w 
clearly have (at least) the same symmetry q~ has. Thus the configurations of Figs. 
6-8 provide examples of symmetric functions whenever one has found a particular 
solution of (2.1)-(2.3) and has chosen any basis in the corresponding associativee 
algebra. 

6. Permutations and Schubert polynomials 

This section is devoted to studying the simplest solution of Eqs. (2.1)-(2.3), namely, 
the solution 

hi (x )  ~- 1 +xui, (6.1) 

where ui's are the generators of the nilCoxeter algebra ._,ug0,0 (see Section 2). In this 
case there is a natural basis W = S, formed by the permutations, and the functions 
~w(~) of Section 5 have a nice combinatorial interpretation. 
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10 (x) 

Let c¢ be a generalized configuration (see Section 4), and let w E Sn. One can see 
directly from the definitions that the function ~w(C~) has the following meaning. In the 
neighborhood of each intersection point, transform the configuration in one of the two 
ways shown in Fig. 9. (This corresponds to choosing either 1 or (x - y ) u i  from the 
corresponding factor h i ( x - y )  = 1 + ( x - y ) u i . )  Then we get a braid that naturally gives 
a permutation.  Now take all the transformations of the initial configuration which lead 
to the given permutation and satisfy the following condition: any two threads in the 

resultin9 braid intersect at most  once. (This condition ensures we are getting a reduced 
decomposition, i.e., the corresponding product of generators of the nilCoxeter algebra is 
the same as it would be in the group algebra of the symmetric group.) For each of these 
pictures write a product I-[(x - y) computed over all intersection points which were 
'resolved' as shown in Fig. 9(b). Then add all these products. The result is ~w(~). 

Example 6.1. See Fig. 10. Note that we exclude the picture in Fig. 10 (x) because 
the upper two braids intersect twice. 
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Fig, 11. 

Proposition 6.2 ([14]; cf. also [4]). Let hi(x) be defined by (6.1). Let cg be the con- 
figuration in Fig. 11; thus 

n--I 1 

+((~) = ~ ( x , y )  = H H hi+j-l(Xi - YJ) ( 6 . 2 )  
i=1 j=n-i 

Then, for an), w E Sn, the function ~w(Xl . . . . .  Xn-1;-Yl . . . . .  -Yn-1) is the double 
Schubert polynomial of Lascoux and Schiitzenberger. 

See, e.g., [25,22] for the usual definition of the Schubert polynomials via divided 
differences. These polynomials are usually denoted ~w; we will also use this notation 
(cf. Section 8). 

In particular, for Yl = y2 . . . . .  0 we get ordinary Schubert polynomials 
[23,3,8,25,22]. Thus Example 6.1 gives a computation of all Schubert polynomials 
for the symmetric group $3. 

Note that the configuration in Fig. 11 is a special case m -- 0 of the one 
in Fig. 6. 

Proposition 6.3. Assume, as before, that hi(x)'s are defined by (6.1). Then, for w E 
Sn, the function Gw defined by (5.2) is the so-called stable Schubert polynomial or 
Stanley's symmetric function. 

See [14] or [4] for a definition of Gw which essentially coincides with that of 
ours. The original definition appeared in [29]; see also [23]. Kra~kiewicz and 
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Fig. 12. 

Pragacz [19] constructed representations of  Sn which correspond to Gw's; see 

also [ 18] 
Sometimes it is more natural and convenient to work with respective symmetric 

functions in infinitely many variables. To do this, take the configuration in Fig. 7 and 

set zi = 0 for all i 's. It results in a Stanley's symmetric function in infinitely many 
variables Xl,X2,...  One can also consider more general 'double Stanley polynomials '  

(or 'double stable Schubert polynomials ' )  Gw(xz,x2 . . . .  ; zl ,  z2 , . . . )  which are symmetric 

in xi 's  and, separately, in zi 's for i >>,n - 1. 

We are going to clarify now why the Gw's are called the stable Schubert 

polynomials. 

Let w C Sn be a permutation regarded as a bijection {1 . . . . .  n} --~ {1 . . . . .  n}, and m 
a positive integer. Define a permutation 1 m × w @ Sn+m by 

x w)( i )  = f i if  i<,m, (ira 
t m + w ( i - m )  i f i  > m. 

In other notation, i f  w = Wl . . .wn,  then lm x w = 12 . . .m(m + w l ) . . . ( m  + w,) .  

Proposition 6.4. Let  w C Sn. Then the double Schubert polynomial  

~1,,, ×w(Xl,. •. ,Xm+n-1; --Yl . . . . .  --Ym+n-1 ) 

coincides with the polynomial  q~w(~) where ~ is the configuration in Fig. 6. 

ProoL Look at Fig. 12. [] 
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Now we can tend m to infinity and get, as a limiting case, the configuration in Fig. 7 
which corresponds to the double Stanley polynomial in infinitely many variables. Thus 

we obtain a 'super-symmetric version' of the well-known result [23,4, 14]: Stanley's 

polynomials are the stable Schubert polynomials. 

Corollary 6.5. For an)' permutation w, l i m m ~  ~-I,,,:<w = Gw where the limit means 
that the coefficient of  each particular monomial in the expansion of  ~1,,, ×w gets f ixed 
when m is sufficiently large. 

7. Enveloping algebra of U+(gl(n)) 

Let ,~/be the universal enveloping algebra of the Lie algebra of the upper triangular 

matrices with zero main diagonal. Then d can be defined as generated by ui, u2, ... 
satisfying (2.4) and the Serre relations 

[ui, [ui, ui+l]] = 0, (7.1) 

where [ , ] stands for commutator: [a,b] = a b -  ba. We will show that this 
algebra provides another example of  an exponential solution of the Yang-Bax- 

ter equation. In other words, (2.6) holds; thus the elements hi(x) = exp(xui) 
satisfy (2.1)-(2.3). Hence one can define corresponding symmetric functions as 

well as certain analogues of the Schubert polynomials related to this specific 
solution. 

Theorem 7.1. Relations (2.4) and (7.1) imply (2.6). 

Proof. Let us redenote a = ui, b = ui+ 1. So we need to prove that [a,[a,b]] = 
[b, [a, b]] -- 0 implies [exp(xa) exp(xb), exp(yb) exp(ya)] -- 0. 

It suffices to show that the coefficient T, of xn/n! in exp(xa)exp(xb) commutes 

with the coefficient Sm of ym/m! in exp(yb)exp(ya). Let Ae be the algebra gener- 

ated by a + b and [a,b]. We will prove that Tn E 5°. Then, similarly, Sm C Ae 
and they commute because 50 is commutative. Now note that Tn = ~(~k) u_k~.-kv 

and therefore T~+l = aT, + T~b. So our claim follows from the following 
lemma. 

Lemma 7.2. I f  T E 5°, then aT + Tb E LP. 

Proofl Since aT + Tb = (a + b)T + [T,b], we need to prove that [T,b] E L¢. We can 

assume that T is a monomial in a + b and [a, b]. Now take Tb and move b to the left 
through all the factors; each of these is either (a+b) or [a, b]. While moving, we will be 
getting in each step an additional term which is either [ a+  b, b] or [[a, b], b] surrounded 
by expressions belonging to LP. Since both [a + b, b] c 5¢ and [[a,b],b] E L¢, this 
completes the proof of Lemma 7.2 and Theorem 7.1. [] 
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ind on 

Yl " v " X~ • X t 

y L /  ~ '--~x I 

z 

/y 
h...(z-y)h...(x-z)=h...(x-y) 

F i g .  13. 

8. Cauchy-type identifies 

Let ~ (x , y ) - -  ~ (xl . . . . .  x ,_ l ;  Yl . . . . .  Yn-l) denote the generalized double Schubert 

expression; in other words, ~ (x,y) = @(c~) where ~ is as shown in Fig. 11. 

Theorem 8.1. (i) ~ ( z , y ) ~  (x ,z)  -- ~ (x ,y) .  
(ii) ~ ( x , x )  = 1. 

Proof.  (i) See Fig. 13. (ii) Let x = y = 0; then (i) gives 1 = ~ (0 ,0)  = ~ ( z , 0 ) ~  (0 ,z)  

which implies that 1 = ~ (0, z ) ~  (z, 0) = ~ (z, z), as desired. 

Theorem 8.1(i) generalizes [14, Lemma 4.5] and [25, pp. 87-88]. (Our proof  is 
essentially a modified geometric version of  the proof  in [14].) In the nilCoxeter case, 

it tells (after the substitution y ,  - y )  that 

~w(X,y) = ~ ~u(z,y)~v(x, -z). 
U U = W  

I(U)+I(v)=I(w) 

When z = 0 = (0 , . . . , 0 ) ,  Theorem 8.1(i) reduces to ~ ( 0 , y ) ~  ( x , 0 ) =  ~ (x ,y) ,  a 
formula that allows to express generalized double Schubert polynomials in terms of  
'ordinary'  ones (i.e., not double but still generalized); cf. [21,25,14]. Note that in the 

nilCoxeter case ~w(x, O) = Gw(X) and ~w(O,y) = ~w- ' ( -Y) .  
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"" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  :: "i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  :: 

"". "" O0 

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : 0 0 

Fig. 14. 

X2 ~ Y2 

Fig. 15. 

Let G denote the expression ~ (~ )  defined by the configuration ~ in Fig. 6 with 

m = n and xn+l = xn+2 . . . . .  Yn+l = Yn+2 . . . . .  0 (see Fig. 14). This is a 
generalized 'supersymmetric Stanley expression' in the variables x~ . . . . .  x~, Y I , . . . ,  y,.  

T h e o r e m  8.2. Let  

n-1 1 

(x,y) = I-[ I-[ hJ( x' - yn - i+ j - l )  
i=1  j = i  

be the 'flipped' Schubert expression; see Fig. 15. (Do not confuse ~ with ~ o f  

[14].) Denote, as before, x = (Xl . . . . .  xn-1) and y : (yl  . . . . .  Yn-l) .  Then 

G(xl . . . . .  x,; Yl . . . . .  y , )  : ~ (X, 0 ) ~  (X 2 . . . . .  Xn; Y2 . . . . .  y , ) ~  (O,y). 

Proof. See Fig. 14; configurations are identified with corresponding expressions. [] 

In the nilCoxeter case, 

( x , y )  : Z ~w(X , - i  . . . . .  xl; y , - l , . . . ,  yl ) wow-lwo;  
w 

this follows from the fact that we can obtain Fig. 15 by first flipping it in a vertical 
line, then flipping it upside down, and then renumbering xi's and y j ' s  the other way 
around. 
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Corollary 8.3. For the double Stanley polynomials Gw = Gw(Xl  . . . . .  Xn; Yl . . . . .  yn ), 

Gw = ~ ~u(X)~wov-,wo(X, . . . . .  x2; y,, . , y 2 ) ~ p - , ( - y )  • 
uvp~w 

l(u)+l(v)+l(p)=l(w) 

Setting Yl : Y2 . . . . .  0, we obtain an exact expression for Stanley 's  polynomials  

in terms o f  Schubert 's.  Note that Gw, being a homogeneous symmetric function that 

expands into a sum of  Schur functions whose shapes have at most n - ! columns (see 

[10]), is uniquely defined by its n-variables specialization. 

Corollary 8.4. 

Gw(Xl . . . . .  Xn ) = 

Theorem 8.5. 

Z ~ u ( X l  . . . .  'Xn--1 ) ~ w ° v - t w o ( X n  . . . . .  X2)" 
UO=W 

I(U)+I(v)=I(w) 

G ( x 1 , . . . ,  xn', Zl . . . .  , zn)G(zl . . . . .  zn; Yl, • • •, Yn) = G(xb  • • •, xn; Yl , . . . ,  Yn). 

Proof 1 (nilCoxeter case only). Derive from Theorem 8.1(i) and Proposition 6.4. [] 

Proof 2. By analogy with Theorem 8.1(i), ~ ( x , z ) ~ ( z , y )  = ~ ( x , y ) .  Use this 

observation and Theorem 8.2 to obtain 

G ( X l , . . . , x n ;  Zl . . . . .  zn)G(Z'l . . . . .  "Zn; Y l , . . . ,  Yn) 

= ~ ( x , 0 ) ~  (x2 . . . . .  x,;z2 . . . . .  z , ) ~  ( 0 , z ) ~  (z ,0 )  

)< ~ (Z2 , . - .  ,Zn'~ Y2 . . . .  , y~ ) ~  (O,y) 

= ~ ( x , O ) ~  (x2 . . . . .  x.;z2 . . . . .  z . ) ~  (z2, . . .  ,Zn; Y2 . . . .  , y . ) ~  (O,y) 

= ~ (X, 0 ) ~  (X 2 . . . .  , Xn; Y2 . . . . .  y n ) ~  (0 ,y )  : G(xl . . . . .  Xn, Yl,-  • . ,  Y,). 

Corollary 8.6. 

G(xl . . . . .  Xn',Xl,...,Xn) = 1. 

Proof .  Same reasoning as in the proof  o f  Theorem 8.1(ii). [] 

Corollary 8.7. 

( i)  Gw(x , y )=  Gu(x, z)G~(z,y) ;  
UD:W 

I(U)+I(v)=I(w) 

(ii) Gw(x,y)= ~ Ou(x)G~-,(-y). [] 
ut): w 

I(u)+l(v)=l(w) 

[] 
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The last identity has the following interpretation. One can see that the cano- 
nical involution ~o of  the space of  symmetric functions (see [24]) sends G~ to 
G~ ,. On the other hand, the definition of  Gw's (see Fig. 6 or 14) implies 

that 

Gw(xl . . . . .  xn, Y l , . . . , y n ;  0 . . . . .  O) = E Gu(xl . . . . .  xn)Gt~(yl . . . . .  Yn). 
u ~ w  

l(u)+l(v)=l(w) 

Applying ~o to the y j ' s  only, we obtain a formula for the superfication of  Gw's: 

Gsupert.. . ~ w ~,~1 . . . .  ,Y l , . . . )  = G~(xl . . . .  )Gt, , (Yl , . . . )  -- Gw(Xl . . . . .  - Y l  . . . .  ). 
U D ~ W  

I(U)+I(v)=I(w) 

In other words, G w ( x , - y )  is the canonical superfication of  Gw(x).  In the case 
when w is a 321-avoiding permutation (see, e.g., [4]), this statement reduces to 

the recently found new formula for the [skew] super-Schur functions 
[15,26]. 

9. Specializations 

In this section some computations made in [14] are generalized and simplified. First 

we treat the special case when xl = x2 . . . .  , Yl = Y2 . . . .  

L e m m a  9.1. Le t  c = (c ,c  . . . .  ) where c E K. Then ~ (x  + c , y  + c) = ~ ( x , y ) .  The 

same  is true f o r  ~ and G. 

Proof .  IIh. . .((xi  -q- c)  - ( y j  q- c ) )  = l-Ih...(xi - y j ) .  [] 

L e m m a  9.2 (cf. [14, Lemma 5.1; 25, p. 89]). Le t  x -- ( x , x , . . . ) ,  y = ( y , y  . . . .  ). Then 

(x)~  (y) = ~ (x + y). 

Proof .  Lemma 9.1 and Theorem 8.1(i) imply 

~ ( x + y )  = ~ ( x + y , o )  = ~ ( y , - x ) =  ~ ( 0 , - x ) ~  (y,0) 

= ~ (x, 0 ) 5  (.v, o). [] 

Theorem 9.3 (cf. [14, Lemma 2.3; 25, (6.11)]). Assume  (2.4)-(2.6) hold. Then 

(x ,x  . . . .  ) = exp(x - (uj + 2ue + 3u3 + . . . ) ) .  

Proof.  Coincides with the proof  of  [14, Lemma 2.3]. [] 

Let us return now to the general case. 
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Theorem 9.4. Let xl, x2 . . . .  be an infinite sequence of formal variables. Then 

l 1 

(x, , . . . ,x ,_,)  : H I ]  hj(x  - zk+j), 
k=c~ j = n -  1 

where in the [non-commutative] products the factors are multiplied in decreasin9 order 
(with respect to k and j).  

Proof. Use a pictorial representation and Corollary 8.6 to see that 

l 

H hj(xk - xk+j)~ (0,x) 
j = n -  I 

= G(...,xz,x~,O,O . . . .  ; . . .  , X 2 , X l , O , O  . . . .  ) = 1; 

then it only remains to recall that ~ (0,x) = (~  (x,0)) -1. [] 

Corollary 9.5 (14, Lemma 5.3). ~ (1,q, qn-2) H~:o~ 1 . . . .  = I-I)=n-I hj(qJ - qi+j). 

As shown in [14, Theorem 2.4] Corollary 9.5 can be used to obtain an explicit 
formula for the principal specialization of a Schubert polynomial (conjectured in [25, 
(6.1 l q ? ) ]  ). 
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Added in press 

The approach presented in this paper was then used by the authors to construct 
the Bn-analogues of the Schubert polynomials [13] and give the first combinatorial 
interpretation of the Grothendieck polynomials of Lascoux and Schiitzenberger [ 12]. We 
also described explicitly [11] the universal solution of the basic commutation relations 
(2.1)-(2.3). 
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